
Science Department Curriculum Overview

Chemistry: KS4 and KS5

Curriculum Overview – Chemistry

Chemistry is an intriguing and exciting subject and our students' are taught a broad and ambitious curriculum at KS4 and KS5 which aims to expand on the foundational chemical concepts introduced at KS3. At KS4, students will study Atomic Structure and The Periodic Table, Bonding, Rates, Quantitative Chemistry, Rates, Energy and Chemical Changes, Chemical Analysis, Organic Chemistry as well as The Earth's Resources and Their Uses. KS5 cumulatively builds on Bonding, Atomic Structure and Amount of Substance central to chemical work but also introduces a deeper understanding of Kinetics, Periodicity, Equilibria, Reactions of Group 2 and Group 7, Organic Chemistry and Mechanisms and Organic Analysis. The innovative nature of Chemistry means that this field is constantly evolving, and our students are encouraged to complement their learning with wider, up-to-date research in order to expand their contextual appreciation of the subject.

The aims and objectives of the Chemistry curriculum are to enable students to develop:

- essential knowledge and understanding of different aspects of Chemistry;
- chemical practical skills so that they can appreciate the concomitant link between theoretical chemical work and experimental research;
- a confidence in their problem-solving skills towards chemical and quantitative work;
- a passion for the innovative work in Chemistry and the up-to-date research within this field;
- an understanding of how Chemistry shapes and transforms the everyday world and impacts society.

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
ear 9	Autumn 1 Chemistry Students will build on their knowledge separation techniques and begin to analyse separation techniques at a KS4 level.	Chemistry Students will learn about the Periodic Table and its development from the pioneering work made by Newlands	Spring 1 Chemistry Students will learn about Bonding (Ionic, Covalent). Students will demonstrate their understanding	Chemistry Students will continue Bonding module by learning about Giant Covalent Structures and Metallic Bonding.	Chemistry Students will learn the principles of the Greenhouse Effect and how this links to Climate Change.	Chemistry Students will learn the principles of the Greenhouse Effect and how
Yea	Students will also build on their knowledge of atomic structure and	and Mendeleev. They will compliment this with how the	through diagrams and extended writing.	Students will then start the next module on the	They will also learn about the Carbon Footprint and evaluate how human activities contribute to the	this links to Climate Change.

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
apply this to electronic configuration, ions and isotopes. They will also explain the development of atomic theory from Dalton to Chadwick. Core Practical - Chromatography	modern day periodic is arranged (metals / non-metals) and link this to electronic configuration. Students should also be able to describe trends in Group 1,7,0.	Students will be able to explain trends in reactivity of Group 1 and 7 and explain the melting point/boiling point trends of Group 7 and 0.	Earth's Atmosphere and will evaluate the composition and the evolution of the Earth's Atmosphere.	Greenhouse Effect → Global Warming → Climate Change. Students will also learn about pollutants in the Earth's atmosphere: how they arise, their effects and how they can be minimised.	Students will learn about Finite resources and how to make potable water. They will also learn about the LCA, contextualising this to industry today, and build on the Reduce, Reuse and Recycle principles learnt at KS3. Core Practical: Analysis and purification of water samples from different sources, including pH, dissolved solids and distillation.

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year 10	Chemistry Students will build on their knowledge of the reactivity series to extraction of metals. They will also develop their acids and bases knowledge by learning about reactions of acids with: metals, bases/alkalis, metal carbonates. Students will apply their knowledge of the pH scale to describe and explain the principles of strong and weak acids. Core Practical: Preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution.	Chemistry Students will learn about Electrolysis and be able to explain why this method of extraction is used and evaluate its disadvantages. Students will then learn about the extraction of both molten and aqueous electrolytes. Students will also learn about how aluminium is extracted from aluminium oxide. Core practical - Investigate what happens when aqueous solutions are electrolysed using inert electrodes.	Chemistry Students will learn about Energy Changes and will be able to describe both exothermic and endothermic reactions and show their differences in energy profile diagrams. Students will evaluate energy changes in reactions using bond energy calculations. Triple content only: Students will then learn about chemical cells and fuel cells and evaluate their use. Core Practical: Investigate the variables that affect temperature changes in reacting solutions such as, eg acid plus metals, acid plus carbonates, neutralisations, displacement of metals.	Chemistry Students will learn about Quantitative Chemistry by first describing the Law of Conservation of Mass. Students will then calculate relative formula masses. Students will calculate concentration and volume of gases (non-mole based calculations). They will then learn the mole equation and apply this to calculating masses from balanced symbol equations.	Chemistry Students will learn how to identify limiting reagents through reacting masses calculations. Triple content only: Students will apply their learning to calculating percentage yields and atom economies. They will then learn how to calculate concentrations from titration calculations. Core Practical: Determination of the reacting volumes of solutions of a strong acid and a strong alkali by titration.	Chemistry Students will be reviewing and consolidating what they have learnt so far.
	Chemistry Students will learn about collision theory and the factors affecting rate of reaction.	Chemistry Students will learn about reversible reactions and dynamic equilibrium.	Chemistry Students will learn about testing for gases. Triple content only: Students will learn	Chemistry Triple content only: Students will summarise their learning on equilibrium and	Chemistry Triple content only: Students continue their learning by studying carboxylic acids and their reactions and polymers.	Chemistry Students will sit their final chemistry exam.

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	They will also learn	Students will study	about Instrumental	using Earth's		
	about how catalysts	Le Chatelier's	Analysis and how	resources in the		
	affect the rate of	Principle and explain	this used in everyday	Haber Process and	Chemistry	
	reaction.	how altering reaction	life. They will then	Fertilizers.	Students will prepare for	
11		conditions affects	learn how to test for	Students will then	the final exams	
	Core Practical(s):	the position of the	and identify positive	complete		
Year	Investigate how changes	equilibrium.	and negative ions.	Quantitative		
۶	in concentration affect			Chemistry Part 2 and		
	the rates of reactions by	Students will then	Core Practical: Use of	apply their		
	a method involving	extend their	chemical tests to	quantitative learning		
	measuring the volume of	knowledge on	identify the ions in	to calculating		
	a gas produced and a	mixtures and pure	unknown single ionic	percentage yields		
	method involving a	substances by	compounds.	and atom		
	change in colour	applying this to		economies. They will		
		formulations.		then learn how to		
				calculate		
		Students will then		concentrations from		
	Physics	build on their		titration		
	Students will learn	learning from Year 9		calculations.		
	about the different	on chromatography,		Core Practical:		
		by evaluating		Determination of the		
	types of waves: Transverse and	solubilities of		reacting volumes of		
		compounds		solutions of a strong		
	longitudinal waves and Properties of	separated.		acid and a strong		
	waves.			alkali by titration.		
	waves.	Core Practical:				
	Core practical-	Investigate how		Triple content only:		
	Investigating waves in	paper		Students will then		
	solids and liquids.	chromatography can		finalise their learning		
	.	be used to separate		in organic chemistry		
		and tell the		by learning about		
		difference between		the structure ,		
		coloured substances.		nomenclature and		
		Students should		reactivity of alkenes		
		calculate Rf values.		and alcohols.		
KS5	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2

solution

Teacher 1: Physical and **Inorganic** Chemistry Students will then learn about **entropy** and how to calculate entropy changes in reactions. This will then be applied to Gibb's Free Energy **Equations** and associated graph work. Students will build on their AS knowledge of periodicity, and learn about the reactions of period 3 elements.

They will then

trends in

and their

reactivity

the acidic /

period 3

oxides.

learn about the

period 3 oxides

before studying

basic nature of

Summer 2

theory to predicting 3D shapes of simple molecules. They will also learn about enthalpy reactivity of halogenoalkanes. They will also learn about enthalpy They will also learn about enthalpy reactivity of halogenoalkanes. The latter be groups and assign spectra to a variety spectroscopy to identify functional groups and assign spectra to a variety spectroscopy to identify functional groups and assign spectra to a variety	Autumi	n 1 Autumn 2	Autumn 1	Spring 1	Spring 2	Summer 1	Summer 2
reaction, calorimetry before applying this knowledge to Hess's Law (both enthalpy of formation and combustion). They will finally extend their learning on bond calculations from KS4. reaction mechanisms including: nucleophilic substitution, elimination and ozone depletion. Core Practical: Identification of functional groups by test-tube reactions compounds. Core Practical: Identification of functional groups by test-tube reactions students will then study alkenes their structure, bonding and reactivity compounds. Core Practical: Identification of functional groups by test-tube reactions compounds. Core Practical: Identification of succession functional groups by test-tube reactions compounds. They will final groups by test-tube reactions compounds.	and how this in melting/boiling Finally, they wi their learning of electron repulse theory to predict shapes of simp	Students will then learn about the key concepts in energetics building on exothermic and endothermic reaction principles. They will also learn about enthalpy changes in a reaction, calorimetry before applying this knowledge to Hess's Law (both enthalpy of formation and combustion). They will finally extend their learning on bond calculations from KS4. Core Practical: Measurement of an enthalpy change. Teacher 2: Physical and Organic Chemistry Students will build on their KS4 knowledge on rates and collision theory and apply this to Maxwell Boltzmann	and how this influence melting/boiling points. Finally, they will apply their learning on electron repulsion theory to predicting 3D shapes of simple	Teacher 2: Physical and Organic Chemistry Students will learn about the structure, nomenclature and reactivity of halogenoalkanes. The latter be demonstrated through a variety of reaction mechanisms including: nucleophilic substitution, elimination and ozone depletion. Students will then study alkenes their structure, bonding and reactivity (electrophilic addition reactions). Finally, they will apply their learning to addition	Students will then learn about Organic Analysis and use mass spectrometry, infrared spectroscopy to identify functional groups and assign spectra to a variety of organic compounds. Core Practical: Identification of functional groups by	Summer 1	Teacher 2: Physical and Organic Chemistry Students will then learn about the structure and acidity of carboxylic acids. They will finally move onto the nomenclature of esters, esterification and uses of esters. This module

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Students will learn the affect of catalysts on reaction kinetics and describe everyday examples of catalysts in industry. They will also evaluate the use of CFCs.				
	Core Practical: Investigation of how the rate of a reaction changes with temperature. Students will then move their learning onto Organic Chemistry starting with an introduction to nomenclature, formulae and isomerism.				
	They will then extend learning on alkanes from KS4 looking at fractional distillation of crude oil and cracking of hydrocarbons. Students will learn about the combustion of hydrocarbons and				

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
		the chlorination of				
		alkanes in radical				
		chain reactions.				
	Teacher 1: Physical and	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical and	Students will
	Inorganic Chemistry	and Inorganic	and Inorganic	and Inorganic	Inorganic Chemistry	be reviewing
	Students to start A2	Chemistry	Chemistry	Students will build on	Students will be reviewing	and
	learning by focusing on	Students will	Students will learn	their AS knowledge	and consolidating what	consolidating
	thermodynamics.	continue their	about the chemical	of periodicity, and	they have learnt so far.	what they have
	Students will review and	acids/base work by	properties of	learn about the		learnt so far.
13	extend their	evaluating how	transition metals	reactions of period 3	Teacher 2: Physical and	
	understanding on	buffer solution work	including ligand	elements.	Organic	
Year	enthalpy changes.	and performing	substitution		Students will be reviewing	
Ϋ́		buffer calculations.	reactions and the	They will then learn	and consolidating what	
	Students will then apply		chelating effect.	about the trends in	they have learnt so far	
	their learning to Born	Core Practical:	From their prior	period 3 oxides and	with particular emphasis	
	Haber Cycles to	Investigate how pH	learning in GCE	their reactivity	on Organic Synthesis.	
	calculate different	changes when a	chemistry, they will	before studying the		
	enthalpy changes. This	weak acid reacts with	apply this to the	acidic / basic nature		
	will also be applied to	a strong base and	shape of transition	of period 3 oxides.		
	enthalpy changes of	when a strong acid	metal complexes			
	solution.	reacts with a weak	and their variable	Students will then		
	Students will then learn	base.	oxidation states,	learn their final		
	about entropy and how		giving rise to their	module from this half		
	to calculate entropy	Students will then	reactivity and	of the course where		
	changes in reactions.	extend their KS4	coloured complexes.	they will study the		
	This will then be applied	learning on chemical		equilibrium		
	to Gibb's Free Energy	cells and use this to	They will then learn	constant, Kp. Here		
	Equations and	predict the direction	how to perform	they will calculate		
	associated graph work.	of simple redox	redox and titration	partial pressures,		
		reactions. They will	calculations.	mole fractions and		
	Students will learn about	then learn about the		Kp calculations . They		
	Acids and Bases	commercial uses of	Finally, they will	will also evaluate		
	extending knowledge of	electrochemical	learn about the use	how factors such as		
	the pH scale , defining	cells.	of transition metals	temperature and		
	and Kw and calculating		as catalysts with	catalysts affect the		
	Ka . They will perform	Core Practical:	particular reference	position of the		
	acid / base titration	Measuring the EMF	to the Contact	equilibrium.		
	calculations and analyse	of an electrochemical	Process.			
	pH curves derived from	cell.				

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
these to identify		Students will then	Teacher 2: Physical		
appropriate indicators	Teacher 2: Physical	move onto learning	and Organic		
to use.	and Organic	the reaction of ions	Chemistry		
	Chemistry	in aqueous solutions.	Students will		
	Students will build on	Core Practical: Carry	continue their		
Teacher 2: Physical and	their kinetics learning	out simple test-tube	learning on biological		
Organic Chemistry	from AS by	reactions to identify	chemistry by		
Students to start A2	describing and	transition metal ions	studying the		
learning by focusing on	analysing rate of	in aqueous solution.	chemistry in enzyme		
Optical Isomerism. They	reaction using		action, DNA and		
will learn about	graphs. They will	Teacher 2: Physical	action of anti-cancer		
enantiomers and	then learn about the	and Organic	drugs.		
racemic mixtures.	rate expression and	Chemistry			
	how this links to the	Students will learn	Students will then		
They will then learn	order of the	about arenes –	learn about ¹ H and		
about the oxidation and	reaction. Following	nomenclature,	¹³ C NMR and analyse		
reactivity of aldehydes	this, they will then	physical properties	spectra to identify		
and ketones, focusing on	learn about the Rate	and reactivity:	their corresponding		
nucleophilic addition	Equation.	electrophilic	organic compounds.		
reactions.		substation, nitration			
	Reaction kinetics will	and Friedal-Crafts	Students will then		
Students will then learn	then be applied to	Acylation.	learn their final		
about the structure and	the Arrhenius		module from this half		
acidity of carboxylic	equation and its	They will then learn	of the course where		
acids.	associated graph	about amines –	they will extend their		
	work.	nomenclature,	learning on		
They will finally move	Cr. de de Milate	physical properties	chromatography		
onto the nomenclature	Students will then	and reactivity	from KS4 by applying		
of esters, their	finalise their learning	(nucleophilic	this to thin layer, gas and column		
formation / reactions	in this module by	reactions).			
and finally their uses.	studying the Rate		chromatography.		
	Determining Step.	They will learn about	Cono Dunation!		
Students will also	Como Dunationi	condensation	Core Practical:		
perform esterification	Core Practical:	polymers and the	Separation of species		
practicals in the lab.	Measure the rate of	biodegradability and	by thin-layer chromatography		
There will the are leading	a reaction by an	disposal of	cinomatography		
They will then learn	initial rate method,	polymers.			
about the nomenclature	and a continuous	,			
and reactivity	monitoring method.				

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
(nucleophilic addition elimination) of acyl chlorides, amides and acid anhydrides. Core practical: Preparation of - a pure organic solid test of its purity; - a pure organic liquid.		Students will then start their next module by learning about the chemistry in amino acids and proteins.			