Science Department Curriculum Overview

Chemistry: Years 9-13

Curriculum Overview – Chemistry

Chemistry is an intriguing and exciting subject and our students' learning in Years 9-13 aims to expand on the foundational chemical concepts introduced in Years 7 and 8. In Years 9-11, students will study Atomic Structure and The Periodic Table, Bonding, Quantitative Chemistry, Rates, Energy and Chemical Changes, Chemical Analysis, Organic Chemistry as well as The Earth's Resources and Their Uses. In Years 12-13 cumulatively builds on Bonding, Atomic Structure and Amount of Substance central to chemical work but also introduces a deeper understanding of Kinetics, Periodicity, Equilibria, Reactions of Group 2 and Group 7, Organic Chemistry and Mechanisms and Organic Analysis. The innovative nature of Chemistry means that this field is constantly evolving, and our students are encouraged to complement their learning with wider, up-to-date research in order to expand their contextual appreciation of the subject.

The aims and objectives of the Chemistry curriculum are to enable students to develop:

- essential knowledge and understanding of different aspects of Chemistry;
- chemical practical skills so that they can appreciate the concomitant link between theoretical chemical work and experimental research;
- a confidence in their problem-solving skills towards chemical and quantitative work;
- a passion for the innovative work in Chemistry and the up-to-date research within this field;
- an understanding of how Chemistry shapes and transforms the everyday world and impacts society.

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Chemistry Students will build on their knowledge separation techniques and begin to analyse separation techniques at a KS4 level. Students will also build on their	Chemistry Students will learn about the Periodic Table and its development from the pioneering work made by Newlands and Mendeleev. They will compliment this with how the	Chemistry Students will learn about Bonding (Ionic, Covalent). Students will demonstrate their understanding through diagrams and extended writing. Students will be able to explain trends in	Chemistry Students will continue Bonding module by learning about Giant Covalent Structures and Metallic Bonding. Students will then start the next module on the Earth's	Chemistry Students will learn the principles of the Greenhouse Effect and how this links to Climate Change. They will also learn about the Carbon Footprint and evaluate how human	Chemistry Students will learn the principles of the Greenhouse Effect and how this links to Climate Change. Students will learn about Finite resources and how to make potable water.

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	knowledge of atomic structure and apply this to electronic configuration, ions and isotopes. They will also explain the development of atomic theory from Dalton to Chadwick. Core Practical - Chromatography	modern day periodic is arranged (metals / non-metals) and link this to electronic configuration. Students should also be able to describe trends in Group 1,7,0.	reactivity of Group 1 and 7 and explain the melting point/boiling point trends of Group 7 and 0.	Atmosphere and will evaluate the composition and the evolution of the Earth's Atmosphere.	activities contribute to the Greenhouse Effect → Global Warming → Climate Change. Students will also learn about pollutants in the Earth's atmosphere: how they arise, their effects and how they can be minimised.	They will also learn about the LCA, contextualising this to industry today, and build on the Reduce, Reuse and Recycle principles learnt at KS3. Core Practical: Analysis and purification of water samples from different sources, including pH, dissolved solids and distillation.
Year 10	Chemistry Students will build on their knowledge of fossils fuels to apply this to formation, use and extraction of crude oil. Triple content only: Students will build on their knowledge from their hydrocarbon learning to apply this to alcohols, carboxylic acids, polymers, amino acids and DNA. Students will build on their knowledge of the reactivity series	Chemistry They will also develop their acids and bases knowledge by learning about reactions of acids with: metals, bases/alkalis, metal carbonates. Students will apply their knowledge of the pH scale to describe and explain the principles of strong and weak acids. Core Practical: Preparation of a pure, dry sample of a soluble salt from an	Chemistry Students will learn about Energy Changes and will be able to describe both exothermic and endothermic reactions and show their differences in energy profile diagrams. Students will evaluate energy changes in reactions using bond energy calculations. Triple content only: Students will then learn about chemical cells and fuel cells	Chemistry Students will learn about Quantitative Chemistry by first describing the Law of Conservation of Mass. Students will then calculate relative formula masses. Students will calculate concentration and volume of gases (non-mole based calculations). They will then learn the mole equation and apply this to calculating masses	Chemistry Students will learn how to identify limiting reagents through reacting masses calculations. Triple content only: Students will apply their learning to calculating percentage yields and atom economies. They will then learn how to calculate concentrations from titration calculations. Core Practical: Determination of the reacting volumes of solutions of a strong	Chemistry Students will be reviewing and consolidating what they have learnt so far. End of Year Revision.

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
to extraction of	insoluble oxide or	and evaluate their	from balanced	acid and a strong	
metals.	carbonate using a	use.	symbol equations.	alkali by titration.	
	Bunsen burner to heat	Core Practical:			
	dilute acid and a	Investigate the		End of Year Revision.	
	water bath or electric	variables that affect			
	heater to evaporate	temperature changes			
	the solution.	in reacting solutions			
		such as, eg acid plus			
	Students will learn	metals, acid plus			
	about Electrolysis and	carbonates,			
	be able to explain	neutralisations,			
	why this method of	displacement of			
	extraction is used	metals.			
	and evaluate its				
	disadvantages.				
	Students will then				
	learn about the extraction of both				
	molten and aqueous				
	electrolytes.				
	Students will also				
	learn about how				
	aluminium is				
	extracted from				
	aluminium oxide.				
	Core practical -				
	Investigate what				
	happens when				
	aqueous solutions are				
	electrolysed using				
	inert electrodes.				
Chemistry	Chemistry	Chemistry	Chemistry	Chemistry	Chemistry
Students will learn	Students will learn	Students will learn	Triple content only:	Triple content only:	Students will sit their
about collision	about reversible	about testing for	Students will	Students continue	final chemistry exam.
theory and the	reactions and	gases.	summarise their	their learning by	
factors affecting rate	dynamic equilibrium.	Triple content only:	learning on	studying carboxylic	
of reaction.	Students will study Le	Students will learn	equilibrium and using	acids and their	
	Chatelier's Principle	about Instrumental	Earth's resources in	reactions and	
	and explain how	Analysis and how this		polymers.	

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year 11	They will also learn about how catalysts affect the rate of reaction. Core Practical(s): Investigate how changes in concentration affect the rates of reactions by a method involving measuring the volume of a gas produced and a method involving a change in colour	altering reaction conditions affects the position of the equilibrium. Students will then extend their knowledge on mixtures and pure substances by applying this to formulations. Students will then build on their learning from Year 9 on chromatography, by evaluating solubilities of compounds separated.	used in everyday life. They will then learn how to test for and identify positive and negative ions. Core Practical: Use of chemical tests to identify the ions in unknown single ionic compounds.	the Haber Process and Fertilizers. Students will then complete Quantitative Chemistry Part 2 and apply their quantitative learning to calculating percentage yields and atom economies. They will then learn how to calculate concentrations from titration calculations. Core Practical: Determination of the reacting volumes of solutions of a strong acid and a strong alkali by titration.	Chemistry Students will prepare for the final exams	
KS5	Autumn 1 Teacher 1: Physical and Inorganic Chemistry Students will build on	Core Practical: Investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should calculate Rf values. Autumn 2 Teacher 1: Physical and Inorganic Chemistry Students will build on	Spring 1 Teacher 1: Physical and Inorganic ChemistryStudents will extend on their	Triple content only: Students will then finalise their learning in organic chemistry by learning about the structure, nomenclature and reactivity of alkenes and alcohols. Spring 2 Teacher 1: Physical and Inorganic Chemistry Students will learn	Summer 1 Teacher 1: Physical and Inorganic Chemistry Students to start A2	Summer 2 Teacher 1: Physical and Inorganic Chemistry Students will then
	their KS4 knowledge	their KS4	KS4 knowledge on	about periodicity and	learning by focusing	learn about entropy

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	on atomic structure	quantitative work on	chemical equilibria	the trends across	on thermodynamics.	and how to calculate
	to learn about orbital	moles and	and apply this to Kc	period 3.	Students will review	entropy changes in
	theory and electron	Avogadro's constant.	calculations.		and extend their	reactions. This will
	configuration.	They will then learn		They will then learn	understanding on	then be applied to
7		how to calculate	They will describe	about the trends in	enthalpy changes.	Gibb's Free Energy
12	They will also learn	different terms from	and explain how	group 2, reactivity		Equations and
Year	about ionisation	the ideal gas	different factors	and solubility of	Students will then	associated graph
ă	energies and their	equation.	affect the position of	group 2 elements.	apply their learning	work.
>	trends across a		the equilibrium .		to Born Haber Cycles	Students will build on
	period.	They will then learn	Chudanta will alaa	Finally, they will learn	to calculate different	their AS knowledge of
		about empirical	Students will also	about group 7 trends	enthalpy changes.	periodicity, and learn
	Finally, students will	formula and how to	learn about	and the reactions of	This will also be	about the reactions
	learn about Time of	calculate this from	oxidation and	halide ions.	applied to enthalpy	of period 3 elements.
	Flight Mass	both the molecular	reduction	Teacher 2: Physical	changes of solution.	
	Spectrometry and	formula and mass	demonstrating	and Organic		They will then learn
	perform Time of	amounts before	these through half	Chemistry	Teacher 2: Physical	about the trends in
	Flight calculations.	building on balancing	equations. They will state oxidation	Students will learn	and Organic	period 3 oxides and
		equations and	state oxidation states of elements	about alcohol	Chemistry	their reactivity before
	Teacher 2: Physical	titration calculations.		production and the	Students to start A2	studying the acidic /
	and Organic		in different species and apply their	oxidation of alcohols	learning by focusing	basic nature of
	Chemistry	Core Practical: Make		before learning about	on Optical	period 3 oxides.
		up a volumetric	learning through	the elimination	Isomerism. They will	
	Students will build on	solution and carry out	redox equations.	reactions of alcohols.	learn about	Teacher 2: Physical
	their KS4 knowledge	a simple acid-base	Core Practical: Carry		enantiomers and	and Organic
	on bonding (ionic,	titration	out simple test-tube	Core Practical: Carry	racemic mixtures.	Chemistry
	covalent: simple		reactions in aqueous	out test-tube		Students will then
	molecules, covalent:	They will also build	solution to identify	reactions to	They will then learn	learn about the
	giant structures,	on atom economies	cations (Group 2,	distinguish aldehydes	about the oxidation	structure and acidity
	metallic).	and percentage yield	NH_4^+) and anions	from ketones by	and reactivity of	of carboxylic acids.
		calculations from	(Group 7 (halide),	reaction with Tollens'	aldehydes and	_, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	They will then learn	KS4.	OH^{-} , CO_3^2 -, SO_4^{2-}).	reagent and Fehling's	ketones, focusing on	They will finally move
	about		, , , , , , , , , ,	solution	nucleophilic addition	onto the
	electronegativity and	Students will then		Cr. de de 2004	reactions.	nomenclature of
	bond polarity. From	learn about the key	Teacher 2: Physical	Students will then		esters, esterification
	this, they will learn	concepts in	and Organic	learn about Organic		and uses of esters.
	about the three core	energetics building	Chemistry	Analysis and use mass		This module will then
	intermolecular forces	on exothermic and	Students will learn	spectrometry,		be finalised in A2.
	and how this	endothermic reaction	about the structure,	infrared spectroscopy		
		principles.		to identify functional		

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
influence		nomenclature and	groups and assign		
melting/boiling	They will also learn	reactivity of	spectra to a variety of		
points.	about enthalpy	halogenoalkanes.	organic compounds.		
	changes in a reaction,	The latter be			
Finally, they will	calorimetry before	demonstrated	Core Practical:		
apply their learning	applying this	through a variety of	Identification of		
on electron repulsion	knowledge to Hess's	reaction mechanisms	functional groups by		
theory to predicting	Law (both enthalpy	including:	test-tube reactions		
3D shapes of simple	of formation and	nucleophilic			
molecules.	combustion).	substitution,			
		elimination and			
	They will finally	ozone depletion.			
	extend their learning	Students will then			
	on bond calculations from KS4.	study alkenes their			
	from KS4.	structure, bonding			
	Core Practical:	and reactivity			
	Measurement of an	(electrophilic			
	enthalpy change.	addition reactions).			
	entifulpy triunge.	Finally, they will			
	Teacher 2: Physical	apply their learning			
	and Organic	to addition polymers.			
	Chemistry	. ,			
	Students will build on				
	their KS4 knowledge				
	on rates and collision				
	theory and apply this				
	to Maxwell				
	Boltzmann				
	Distribution Curves.				
	Students will learn				
	the affect of catalysts				
	on reaction kinetics				
	and describe				
	everyday examples of				
	catalysts in industry.				

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	They will also				
	evaluate the use of				
	CFCs.				
	Core Practical:				
	Investigation of how				
	the rate of a reaction				
	changes with				
	temperature.				
	Students will then				
	move their learning				
	onto Organic				
	Chemistry starting				
	with an introduction				
	to nomenclature ,				
	formulae and				
	isomerism.				
	They will then extend				
	learning on alkanes				
	from KS4 looking at				
	fractional distillation				
	of crude oil and				
	cracking of				
	hydrocarbons.				
	Students will learn				
	about the				
	combustion of				
	hydrocarbons and the				
	chlorination of				
	alkanes in radical				
	chain reactions.				

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical	Students will be
	and Inorganic	and Inorganic	and Inorganic	and Inorganic	and Inorganic	reviewing and
	Chemistry	Chemistry	Chemistry	Students will build on	Chemistry	consolidating what
	Students to start A2	Students will continue	Students will learn	their AS knowledge of	Students will be	they have learnt so
	learning by focusing	their acids/base work	about the chemical	periodicity, and learn	reviewing and	far.
	on thermodynamics.	by evaluating how	properties of	about the reactions	consolidating what	
13	Students will review	buffer solution work	transition metals	of period 3 elements.	they have learnt so	
` <u>`</u>	and extend their	and performing	including ligand		far.	
Year	understanding on	buffer calculations.	substitution	They will then learn		
× ×	enthalpy changes.		reactions and the	about the trends in	Teacher 2: Physical	
		Core Practical:	chelating effect.	period 3 oxides and	and Organic	
	Students will then	Investigate how pH	From their prior	their reactivity before	Students will be	
	apply their learning	changes when a weak	learning in GCE	studying the acidic /	reviewing and	
	to Born Haber Cycles	acid reacts with a	chemistry, they will	basic nature of	consolidating what	
	to calculate different	strong base and when	apply this to the	period 3 oxides.	they have learnt so	
	enthalpy changes.	a strong acid reacts	shape of transition		far with particular	
	This will also be	with a weak base.	metal complexes and	Students will then	emphasis on Organic	
	applied to enthalpy		their variable	learn their final	Synthesis.	
	changes of solution.	Students will then	oxidation states,	module from this half		
	Students will then	extend their KS4	giving rise to their	of the course where		
	learn about entropy	learning on chemical	reactivity and	they will study the		
	and how to calculate	cells and use this to	coloured complexes.	equilibrium constant,		
	entropy changes in	predict the direction		Kp . Here they will		
	reactions. This will	of simple redox	They will then learn	calculate partial		
	then be applied to	reactions. They will	how to perform	pressures, mole		
	Gibb's Free Energy	then learn about the	redox and titration	fractions and Kp		
	Equations and	commercial uses of	calculations.	calculations. They will		
	associated graph	electrochemical cells.	er. II. da illiano	also evaluate how		
	work.		Finally, they will learn	factors such as		
	Cturdonto will looms	Core Practical:	about the use of	temperature and		
	Students will learn	Measuring the EMF of	transition metals as	catalysts affect the		
	about Acids and	an electrochemical	catalysts with particular reference	position of the equilibrium.		
	Bases extending	cell.	to the Contact	equilibrium.		
	knowledge of the pH scale, defining and		Process.	Teacher 2: Physical		
	Kw and calculating	Teacher 2: Physical	Process.	•		
	Ka . They will perform	and Organic	Students will then	and Organic Chemistry		
	acid / base titration	Chemistry	move onto learning	Students will continue		
	calculations and	Students will build on	move onto learning			
	calculations and	their kinetics learning		their learning on		

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Autumn 1 analyse pH curves derived from these to identify appropriate indicators to use. Teacher 2: Physical and Organic Chemistry Students to start A2 learning by focusing on Optical Isomerism. They will learn about enantiomers and racemic mixtures. They will then learn about the oxidation and reactivity of aldehydes and ketones, focusing on nucleophilic addition reactions. Students will then learn about the structure and acidity of carboxylic acids. They will finally move onto the nomenclature of esters, their formation / reactions and finally their uses.	from AS by describing and analysing rate of reaction using graphs. They will then learn about the rate expression and how this links to the order of the reaction. Following this, they will then learn about the Rate Equation. Reaction kinetics will then be applied to the Arrhenius equation and its associated graph work. Students will then finalise their learning in this module by studying the Rate Determining Step. Core Practical: Measure the rate of a reaction by an initial rate method, and a continuous monitoring method.	the reaction of ions in aqueous solutions. Core Practical: Carry out simple test-tube reactions to identify transition metal ions in aqueous solution. Teacher 2: Physical and Organic Chemistry Students will learn about arenes — nomenclature, physical properties and reactivity: electrophilic substation, nitration and Friedal-Crafts Acylation. They will then learn about amines — nomenclature, physical properties and reactivity (nucleophilic reactions). They will learn about condensation polymers and the biodegradability and disposal of polymers. Students will then	biological chemistry by studying the chemistry in enzyme action, DNA and action of anti-cancer drugs. Students will then learn about ¹ H and ¹³ C NMR and analyse spectra to identify their corresponding organic compounds. Students will then learn their final module from this half of the course where they will extend their learning on chromatography from KS4 by applying this to thin layer, gas and column chromatography. Core Practical: Separation of species by thin-layer chromatography	Summer 1	Summer 2
		start their next module by learning			

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Students will also		about the chemistry			
perform		in amino acids and			
esterification		proteins.			
practicals in the lab.					
They will then learn					
about the					
nomenclature and					
reactivity					
(nucleophilic addition					
elimination) of acyl					
chlorides, amides and					
acid anhydrides.					
Core practical:					
Preparation of - a					
pure organic solid test					
of its purity; - a pure					
organic liquid.					