Science Department Curriculum Overview

Chemistry: Years 9-13

Curriculum Overview – Chemistry

Chemistry is an intriguing and exciting subject and our students' learning in Years 9-13 aims to expand on the foundational chemical concepts introduced in Years 7 and 8. In Years 9-11, students will study Atomic Structure and The Periodic Table, Bonding, Quantitative Chemistry, Rates, Energy and Chemical Changes, Chemical Analysis, Organic Chemistry as well as The Earth's Resources and Their Uses. In Years 12-13 cumulatively builds on Bonding, Atomic Structure and Amount of Substance central to chemical work but also introduces a deeper understanding of Kinetics, Periodicity, Equilibria, Reactions of Group 2 and Group 7, Organic Chemistry and Mechanisms and Organic Analysis. The innovative nature of Chemistry means that this field is constantly evolving, and our students are encouraged to complement their learning with wider, up-to-date research in order to expand their contextual appreciation of the subject.

The aims and objectives of the Chemistry curriculum are to enable students to develop:

- essential knowledge and understanding of different aspects of Chemistry;
- chemical practical skills so that they can appreciate the concomitant link between theoretical chemical work and experimental research;
- a confidence in their problem-solving skills towards chemical and quantitative work;
- a passion for the innovative work in Chemistry and the up-to-date research within this field;
- an understanding of how Chemistry shapes and transforms the material world and impacts society.

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Chemistry	Chemistry	Chemistry	Chemistry	Chemistry	Chemistry
Students will build on	Students will learn	Students will learn	Students will continue	Students will learn	Students will learn
their knowledge	about the Periodic	about Bonding (Ionic,	Bonding module by	the principles of the	the principles of the
separation	Table and its	Covalent). Students	learning about Giant	Greenhouse Effect	Greenhouse Effect
techniques and begin	development from	will demonstrate	Covalent Structures	and how this links to	and how this links to
to analyse separation	the pioneering work	their understanding	and Metallic	Climate Change.	Climate Change.
techniques at a KS4	made by Newlands	through diagrams	Bonding.		
level.	and Mendeleev.	and extended		They will also learn	Students will begin
		writing.	Students will then	about the Carbon	learning Using
	They will compliment		start the next module	Footprint and	Resources Part 1.
	this with how the		on the Earth's	evaluate how human	This includes learning

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year 9	Students will also build on their knowledge of atomic structure and apply this to electronic configuration, ions and isotopes. They will also explain the development of atomic theory from Dalton to Chadwick. Required Practical - Chromatography, an introduction.	modern day periodic is arranged (metals / non-metals) and link this to electronic configuration. Students should also be able to describe trends in Group 1,7,0.	Students will be able to explain trends in reactivity of Group 1 and 7 and explain the melting point/boiling point trends of Group 7 and 0.	Atmosphere and will evaluate the composition and the evolution of the Earth's Atmosphere.	activities contribute to the Greenhouse Effect → Global Warming → Climate Change. Students will also learn about pollutants in the Earth's atmosphere: how they arise, their effects and how they can be minimised.	about Finite resources and how to make potable water. End of Year Exams.
Year 10	Chemistry Students will continue their learning on Using Resources Part 2. Here, they will review and build on their knowledge from Year 9. They will cover the required practical, learn about the LCA, contextualising this to industry today, and build on the knowledge of Reduce, Reuse and Recycle they already have from the material world. Required Practical: Analysis and purification of water	Chemistry Students will learn about Energy Changes and will be able to describe both exothermic and endothermic reactions and show their differences in energy profile diagrams. Students will evaluate energy changes in reactions using bond energy calculations. Sets 1 and 2 will also learn about chemical cells and fuel cells as part of the triple pathway and evaluate their use.	Chemistry Students will learn about Extraction of Metals via different methods including Phytomining and Bioleaching. This will lead them into their learning on Electrolysis where they should be able to explain why this method of extraction is used and evaluate its disadvantages. Students will then learn about the extraction of both molten and aqueous electrolytes. Students will also learn about how aluminium is	Chemistry Students will next develop their acids and bases knowledge from KS3, by learning about reactions of acids with: metals, bases/alkalis, metal carbonates. Students will apply their knowledge of the pH scale to describe and explain the principles of strong and weak acids. Required Practical: Preparation of a pure, dry sample of a soluble salt from an insoluble oxide or	Chemistry Students will learn about Quantitative Chemistry by first describing the Law of Conservation of Mass. Students will then calculate relative formula masses. Students will calculate concentration and volume of gases (non-mole based calculations). They will then learn the mole equation and apply this to calculating masses from balanced symbol equations.	Chemistry Students will be reviewing and consolidating what they have learnt so far. End of Year Exams.

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
samples from different sources, including pH, dissolved solids and distillation.	Required Practical: Investigate the variables that affect temperature changes in reacting solutions such as, eg acid plus metals, acid plus carbonates, neutralisations, displacement of metals.	extracted from aluminium oxide. Required Practical - Investigate what happens when aqueous solutions are electrolysed using inert electrodes.	carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution. Students will learn about Quantitative Chemistry by first describing the Law of Conservation of Mass. Students will then calculate relative formula masses. Students will calculate concentration and volume of gases (non-mole based calculations). They will then learn the mole equation and apply this to calculating masses from balanced symbol equations.	Students will learn how to identify limiting reagents through reacting masses calculations. Sets 1 and 2 will apply their learning to calculating percentage yields and atom economies. They will then learn how to calculate concentrations from titration calculations. Required Practical: Determination of the reacting volumes of solutions of a strong acid and a strong alkali by titration. End of Year Revision.	
Chemistry Students will learn about collision theory and the	Chemistry Sets 1-4 will then study Le Chatelier's Principle and explain how altering reaction	Chemistry Students will learn about testing for gases.	Chemistry Triple students will learn about Instrumental Analysis and how this	Chemistry Students will prepare for the final exams	Chemistry Students will sit their final chemistry exam.

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	factors affecting rate	conditions affects the	Students will then be	used in everyday life.		
	of reaction.	position of the	reviewing and	They will then learn		
		equilibrium.	consolidating what	how to test for and		
_•	They will also learn	Triple students will	they have learnt so	identify positive and		
11	about how catalysts	then apply their	far.	negative ions.		
	affect the rate of	learning to the Haber				
Year	reaction.	Process, its	Due to the additional	Required Practical:		
×		economics and NKP	Organic Chemistry	Use of chemical tests		
	Required Practicals:	fertilisers.	module in Autumn 2,	to identify the ions in		
	Investigate how		Triple students will	unknown single ionic		
	changes in	All students will build	learn the start of their	compounds.		
	concentration affect	on their knowledge of	Chemical Analysis			
	the rates of reactions	fossils fuels to apply	Module in Spring 1.			
	by a method involving	this to formation , use				
	measuring the	and extraction of				
	volume of a gas	crude oil.				
	produced <u>and</u> a					
	method involving a	Triple students will				
	change in colour	then extend their				
		learning to alcohols,				
	C	carboxylic acids,				
	Students will learn	polymers, amino				
	about reversible	acids and DNA.				
	reactions and	All students will				
	dynamic equilibrium.	review and build on				
		their knowledge of				
		mixtures and pure				
		substances by				
		applying this to				
		formulations.				
		Torritalacions.				
		Students will then				
		build on their				
		learning from Year 9				
		on chromatography ,				
		by evaluating				
		solubilities of				

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
		compounds	- 1. 0	- 1- 0		
		separated using Rf				
		value calculations.				
		varac carcarations.				
		Required Practical:				
		Investigate how				
		paper				
		chromatography can				
		be used to separate				
		and tell the difference				
		between coloured				
		substances. Students				
		should calculate Rf				
		values.				
		Triple students:				
		Flipped learning of				
		remaining Using				
		Materials topics.				
KS5	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical
	and Inorganic	and Inorganic	and Inorganic	and Inorganic	and Inorganic	and Inorganic
	Chemistry	Chemistry	Chemistry Students	Chemistry	Chemistry	Chemistry
	Students will build on	Students will build on	will extend on their	Students will learn	Students to start A2	Students will then
	their KS4 knowledge	their KS4	KS4 knowledge on	about periodicity and	learning by focusing	learn about entropy
	on atomic structure	quantitative work on	chemical equilibria	the trends across	on thermodynamics .	and how to calculate
	to learn about orbital	moles and	and apply this to Kc	period 3.	Students will review	entropy changes in
12	theory and electron	Avogadro's constant.	calculations.		and extend their	reactions. This will
<u> </u>	configuration.	They will then learn		They will then learn	understanding on	then be applied to
Year		how to calculate	They will describe	about the trends in	enthalpy changes.	Gibb's Free Energy
χ	They will also learn	different terms from	and explain how	group 2, reactivity	6	Equations and
	about ionisation	the ideal gas	different factors	and solubility of	Students will then	associated graph
	energies and their	equation.	affect the position of	group 2 elements.	apply their learning	work.
	trends across a		the equilibrium .	Finally thou will loom	to Born Haber Cycles	Students will build on
	period.	They will then learn	Students will also	Finally, they will learn	to calculate different	their AS knowledge of
		about empirical	learn about	about group 7 trends	enthalpy changes.	periodicity, and learn about the reactions
	Finally, students will	formula and how to	oxidation and	and the reactions of	This will also be	
	learn about Time of	calculate this from	Oxidation and	halide ions.		of period 3 elements.

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Sipport File State of the same	light Mass pectrometry and erform Time of light calculations. eacher 2: Physical nd Organic themistry tudents will build on heir KS4 knowledge n bonding (ionic, ovalent: simple holecules, covalent: iant structures, hetallic). hey will then learn bout lectronegativity and ond polarity. From his, they will learn bout the three core hermolecular forces nd how this influence helting/boiling oints. inally, they will pply their learning n electron repulsion heory to predicting D shapes of simple holecules.	both the molecular formula and mass amounts before building on balancing equations and titration calculations. Required Practical: Make up a volumetric solution and carry out a simple acid-base titration They will also build on atom economies and percentage yield calculations from KS4. Students will then learn about the key concepts in energetics building on exothermic and endothermic reaction principles. They will also learn about enthalpy changes in a reaction, calorimetry before applying this knowledge to Hess's Law (both enthalpy of formation and combustion).	reduction demonstrating these through half equations. They will state oxidation states of elements in different species and apply their learning through redox equations. Required Practical: Carry out simple test-tube reactions in aqueous solution to identify cations (Group 2, NH ₄ +) and anions (Group 7 (halide), OH-, CO ₃ ² -, SO ₄ ²⁻). Teacher 2: Physical and Organic Chemistry Students will learn about the structure, nomenclature and reactivity of halogenoalkanes. The latter be demonstrated through a variety of reaction mechanisms including: nucleophilic substitution, elimination and	Teacher 2: Physical and Organic Chemistry Students will learn about alcohol production and the oxidation of alcohols before learning about the elimination reactions of alcohols. Required Practical: Carry out test-tube reactions to distinguish aldehydes from ketones by reaction with Tollens' reagent and Fehling's solution Students will then learn about Organic Analysis and use mass spectrometry, infrared spectroscopy to identify functional groups and assign spectra to a variety of organic compounds. Required Practical: Identification of functional groups by test-tube reactions	applied to enthalpy changes of solution. Teacher 2: Physical and Organic Chemistry Students to start A2 learning by focusing on Optical Isomerism. They will learn about enantiomers and racemic mixtures. They will then learn about the oxidation and reactivity of aldehydes and ketones, focusing on nucleophilic addition reactions.	They will then learn about the trends in period 3 oxides and their reactivity before studying the acidic / basic nature of period 3 oxides. Teacher 2: Physical and Organic Chemistry Students will then learn about the structure and acidity of carboxylic acids. They will finally move onto the nomenclature of esters, esterification and uses of esters. This module will then be finalised in A2. Students will be reviewing and consolidating what they have learnt. Students will sit their AS chemistry exam.

They will finally extend their learning on bond calculations from KS4. Required Practical: Measurement of an enthalpy change. Teacher 2: Physical and Organic Chemistry Students will build on their KS4 knowledge on rates and collision theory and apply this to Maxwell Boltzmann Distribution curves. Students will learn the affect of catalysts on reaction kinetics and describe everyday examples of catalysts in industry. They will also evaluate the use of CFCs. Required Practical: Investigation of how	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
the rate of a reaction changes with	Autumn 1	They will finally extend their learning on bond calculations from KS4. Required Practical: Measurement of an enthalpy change. Teacher 2: Physical and Organic Chemistry Students will build on their KS4 knowledge on rates and collision theory and apply this to Maxwell Boltzmann Distribution Curves. Students will learn the affect of catalysts on reaction kinetics and describe everyday examples of catalysts in industry. They will also evaluate the use of CFCs. Required Practical: Investigation of how the rate of a reaction	study alkenes their structure, bonding and reactivity (electrophilic addition reactions). Finally, they will apply their learning	Spring 2		

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Adtaiiii I	ĺ	3prilig 1	3prii 6 2	Janniner 1	Janniner 2
		onto Organic				
		Chemistry starting with an introduction				
		to nomenclature,				
		formulae and				
		isomerism.				
		They will then extend				
		learning on alkanes				
		from KS4 looking at				
		fractional distillation				
		of crude oil and				
		cracking of				
		hydrocarbons.				
		Students will learn				
		about the				
		combustion of				
		hydrocarbons and the				
		chlorination of				
		alkanes in radical				
		chain reactions.				
	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical	Students will be
	and Inorganic	and Inorganic	and Inorganic	and Inorganic	and Inorganic	reviewing and
	Chemistry	Chemistry	Chemistry	They will then learn	Chemistry	consolidating what
	Students to start A2	Students will learn	Reaction kinetics will	how to perform	Students will build on	they have learnt.
	learning by focusing	about Acids and	then be applied to the	redox and titration	their AS knowledge of	
	on thermodynamics.	Bases extending	Arrhenius equation	calculations.	periodicity, and learn	Students will sit their
13	Students will review	knowledge of the pH	and its associated		about the reactions	final chemistry exam.
	and extend their	scale, defining and	graph work.	Finally, they will learn	of period 3 elements.	,
a	understanding on	Kw and calculating		about the use of		
Ϋ́	enthalpy changes.	Ka . They will perform	Students will then	transition metals as	They will then learn	
		acid / base titration	finalise their learning	catalysts with	about the trends in	
	Students will then	calculations and	in this module by	particular reference	period 3 oxides and	
	apply their learning	analyse pH curves	studying the Rate	to the Contact	their reactivity before	
	to Born Haber Cycles	derived from these to	Determining Step.	Process.	studying the acidic /	
	to calculate different	identify appropriate			basic nature of	
	enthalpy changes.	indicators to use.			period 3 oxides.	

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
This will also be		Required Practical:	Students will then		
applied to enthalpy	Students will continue	Measure the rate of a	move onto learning	Students will then be	
changes of solution.	their acids/base work	reaction by an initial	the reaction of ions	reviewing and	
Students will then	by evaluating how	rate method, <u>and</u> a	in aqueous solutions.	consolidating what	
learn about entropy	buffer solution work	continuous		they have learnt.	
and how to calculate	and performing	monitoring method.	Required Practical:	Teacher 2: Physical	
entropy changes in	buffer calculations.	Students will then	Carry out simple test-	and Organic	
reactions. This will		learn about the	tube reactions to	Students will be	
then be applied to	Required Practical:	chemical properties	identify transition	reviewing and	
Gibb's Free Energy	Investigate how pH	of transition metals	metal ions in aqueous	consolidating what	
Equations and	changes when a weak	including ligand	solution.	they have learnt.	
associated graph	acid reacts with a	substitution			
work.	strong base and when	reactions and the	Teacher 2: Physical		
	a strong acid reacts	chelating effect.	and Organic		
Students will then	with a weak base.	From their prior	Chemistry		
extend their KS4		learning in GCE			
learning on chemical	Students will build on	chemistry, they will	Students will then		
cells and use this to	their kinetics learning	apply this to the	learn their final		
predict the direction	from AS by describing	shape of transition	module from this half		
of simple redox	and analysing rate of	metal complexes and	of the course where		
reactions. They will	reaction using	their variable	they will study the		
then learn about the	graphs. They will then	oxidation states,	equilibrium constant,		
commercial uses of	learn about the rate	giving rise to their	Kp . Here they will		
electrochemical cells.	expression and how	reactivity and	calculate partial		
	this links to the order	coloured complexes.	pressures, mole		
Required Practical:	of the reaction.		fractions and Kp		
Measuring the EMF of	Following this, they	Teacher 2: Physical	calculations. They will		
an electrochemical	will then learn about	and Organic	also evaluate how		
cell.	the Rate Equation .	Chemistry	factors such as		
		Students will start	temperature and		
	Teacher 2: Physical	their learning in	catalysts affect the		
Took as 2. Blooming	and Organic	biological chemistry	position of the		
Teacher 2: Physical	Chemistry	by studying the	equilibrium.		
and Organic	Students continue to	chemistry in enzyme			
Chemistry	learn about	action, DNA and			
Charlente will at a th	electrophilic	action of anti-cancer			
Students will start by reviewing their	substation applying	drugs.			

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
learning on carboxylic acids from AS. They will then move onto the nomenclature of esters, their formation / reactions and finally their uses. Students will also perform esterification practicals in the lab. They will then learn about the nomenclature and reactivity (nucleophilic addition elimination) of acyl	Autumn 2 this to Friedal-Crafts Acylation. They will then learn about amines — nomenclature, physical properties and reactivity (nucleophilic reactions). They will learn about condensation polymers and the biodegradability and disposal of polymers.	Spring 1 Students will then learn about ¹ H and ¹³ C NMR and analyse spectra to identify their corresponding organic compounds. Students will then learn their final module from this half of the course where they will extend their learning on chromatography from KS4 by applying this to thin layer, gas and column chromatography. Required Practical: Separation of species by thin-layer	Spring 2		
chlorides, amides and acid anhydrides. Required Practicals: Preparation of - a pure organic solid test of its purity; - a pure organic liquid. Students will also start their learning on arenes — nomenclature, physical properties and reactivity: electrophilic substation, nitration.		chromatography.			