Science Department Curriculum Overview

Chemistry: Years 9-13

Curriculum Overview – Chemistry

Chemistry is an intriguing and exciting subject and our students' learning in Years 9-13 aims to expand on the foundational chemical concepts introduced in Years 7 and 8. In Years 9-11, students will study Atomic Structure and The Periodic Table, Bonding, Quantitative Chemistry, Rates, Energy and Chemical Changes, Chemical Analysis, Organic Chemistry as well as The Earth's Resources and Their Uses. In Years 12-13 cumulatively builds on Bonding, Atomic Structure and Amount of Substance central to chemical work but also introduces a deeper understanding of Kinetics, Periodicity, Equilibria, Reactions of Group 2 and Group 7, Organic Chemistry and Mechanisms and Organic Analysis. The innovative nature of Chemistry means that this field is constantly evolving, and our students are encouraged to complement their learning with wider, up-to-date research in order to expand their contextual appreciation of the subject.

The aims and objectives of the Chemistry curriculum are to enable students to develop:

- essential knowledge and understanding of different aspects of Chemistry;
- chemical practical skills so that they can appreciate the concomitant link between theoretical chemical work and experimental research;
- a confidence in their problem-solving skills towards chemical and quantitative work;
- a passion for the innovative work in Chemistry and the up-to-date research within this field;
- an understanding of how Chemistry shapes and transforms the material world and impacts society.

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Chemistry	Chemistry	Chemistry	Chemistry	Chemistry	Chemistry
Students will build on	Students will learn	Students will learn	Students will continue	Students will learn	Students will learn
their knowledge	about the Periodic	about Bonding (Ionic,	Bonding module by	the principles of the	the principles of the
separation	Table and its	Covalent). Students	learning about Giant	Greenhouse Effect	Greenhouse Effect
techniques and begin	development from	will demonstrate	Covalent Structures	and how this links to	and how this links to
to analyse separation	the pioneering work	their understanding	and Metallic	Climate Change.	Climate Change.
techniques at a KS4	made by Newlands	through diagrams	Bonding.		
level.	and Mendeleev.	and extended		They will also learn	Students will begin
		writing.	Students will then	about the Carbon	learning Using
	They will compliment		start the next module	Footprint and	Resources Part 1.
	this with how the		on the Earth's	evaluate how human	This includes learning

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Students will also	modern day periodic	Students will be able	Atmosphere and will	activities contribute	about Finite
	build on their	is arranged (metals /	to explain trends in	evaluate the	to the Greenhouse	resources and how to
•	knowledge of atomic	non-metals) and link	reactivity of Group 1	composition and the	Effect \rightarrow Global	make potable water .
	structure and apply	this to electronic	and 7 and explain the	evolution of the	Warming \rightarrow Climate	make potuble water.
6 -	this to electronic	configuration.	melting point/boiling	Earth's Atmosphere.	Change.	
Year	configuration, ions	configuration.	point trends of Group	Lartin 5 Atmosphere.	change.	End of Year Exams.
/e	and isotopes. They	Students should also	7 and 0.		Students will also	LING OF TEAT EXAMINS.
	will also explain the	be able to describe	7 and 0.		learn about	
	development of	trends in Group 1,7,0.			pollutants in the	
	atomic theory from	trends in Group 1,7,0.			Earth's atmosphere:	
	Dalton to Chadwick.				how they arise, their	
	Daiton to Chauwick.				effects and how they	
	Dequired Dreation				can be minimised .	
	Required Practical -				can be mininged.	
	Chromatography, an introduction.					
	Chemistry	Chemistry	Chemistry	Chemistry	Chemistry	Chemistry
	Students will	Students will learn	Students will learn	Students will next	Students will learn	Students will be
	continue their	about Energy	about Extraction of	develop their acids	about Quantitative	reviewing and
	learning on Using	Changes and will be	Metals via different	and bases knowledge	Chemistry by first	consolidating what
10	Resources Part 2.	able to describe both	methods including	from KS3, by learning	describing the Law of	they have learnt so
	Here, they will review	exothermic and	Phytomining and	about reactions of	Conservation of	far.
Year	and build on their	endothermic	Bioleaching. This will	acids with metals,	Mass. Students will	
۲e	knowledge from Year	reactions and show	lead them into their	bases/alkalis, metal	then calculate	End of Year Exams.
	9. They will cover the	their differences in	learning on	carbonates.	relative formula	
	required practical,	energy profile	Electrolysis where		masses.	
	learn about the LCA ,	diagrams.	they should be able	Students will apply	Students will	
	contextualising this to	Students will	to explain why this	their knowledge of	calculate	
	industry today, and	evaluate energy	method of extraction	the pH scale to	concentration and	
	build on the	changes in reactions	is used and evaluate	describe and explain	volume of gases	
	knowledge of	using bond energy	its disadvantages.	the principles of	(non-mole based	
	Reduce, Reuse and	calculations.	Students will then	strong and weak	calculations). They	
	Recycle they already	Sets 1 and 2 will also	learn about the	acids.	will then learn the	
	have from the	learn about chemical	extraction of both		mole equation and	
	material world.	cells and fuel cells as	molten and aqueous	Required Practical:	apply this to	
		part of the triple	electrolytes.	Preparation of a pure,	calculating masses	
	Required Practical:	pathway and	Students will also	dry sample of a	from balanced	
	Analysis and	evaluate their use.	learn about how	soluble salt from an	symbol equations.	
	purification of water		aluminium is	insoluble oxide or		

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Autumn 1 samples from different sources, including pH, dissolved solids and distillation.	Autumn 2 Required Practical: Investigate the variables that affect temperature changes in reacting solutions such as, eg acid plus metals, acid plus carbonates, neutralisations, displacement of metals.	Spring 1 extracted from aluminium oxide. Required Practical - Investigate what happens when aqueous solutions are electrolysed using inert electrodes.	Spring 2 carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution. Students will learn about Quantitative Chemistry by first describing the Law of Conservation of Mass. Students will then calculate relative formula masses. Students will calculate concentration and volume of gases (non-mole based calculations). They will then learn the mole equation and apply this to calculating masses from balanced symbol equations.	Summer 1 Students will learn how to identify limiting reagents through reacting masses calculations. Sets 1 and 2 will apply their learning to calculating percentage yields and atom economies. They will then learn how to calculate concentrations from titration calculations. Required Practical: Determination of the reacting volumes of solutions of a strong acid and a strong alkali by titration. End of Year Revision.	Summer 2
Chemistry Students will learn about collision theory and the	Chemistry Sets 1-4 will then study Le Chatelier's Principle and explain how altering reaction	Chemistry Students will learn about testing for gases.	Chemistry Triple students will learn about Instrumental Analysis and how this	Chemistry Students will prepare for the final exams	Chemistry Students will sit their final chemistry exam.

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
factors affecting rate	conditions affects the	Students will then be	used in everyday life.		
of reaction.	position of the	reviewing and	They will then learn		
	equilibrium.	consolidating what	how to test for and		
They will also learn	Triple students will	they have learnt so	identify positive and		
about how catalysts	then apply their	far.	negative ions.		
affect the rate of	learning to the Haber				
reaction.	Process, its	Due to the additional	Required Practical:		
	economics and NKP	Organic Chemistry	Use of chemical tests		
Required Practicals:	fertilisers.	module in Autumn 2,	to identify the ions in		
Investigate how		Triple students will	unknown single ionic		
changes in	All students will build	learn the start of their	compounds.		
concentration affect	on their knowledge of	Chemical Analysis			
the rates of reactions	fossils fuels to apply	Module in Spring 1.			
by a method involving	this to formation , use				
measuring the	and extraction of				
volume of a gas	crude oil.				
produced <u>and</u> a method involving a	Triple students will				
change in colour	then extend their				
chunge in colour	learning to alcohols ,				
	carboxylic acids,				
Students will learn	polymers, amino				
about reversible	acids and DNA.				
reactions and					
dynamic equilibrium.	All students will				
, ,	review and build on				
	their knowledge of				
	mixtures and pure				
	substances by				
	applying this to				
	formulations.				
	Students will then				
	build on their				
	learning from Year 9				
	on chromatography,				
	by evaluating				
	solubilities of				

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
		compounds	3pring 1	391118 2		Summer 2
		separated using Rf				
		value calculations.				
		value calculations.				
		Required Practical:				
		Investigate how				
		paper chromatography cap				
		chromatography can be used to separate				
		and tell the difference between coloured				
		substances. Students				
		should calculate Rf values.				
		values.				
		Triple students				
		Triple students:				
		Flipped learning of				
		remaining Using				
		Materials topics. Autumn 2	Certing 1	Coving 2	Summar 1	Summer 2
KS5	Autumn 1		Spring 1	Spring 2	Summer 1	Summer 2
	Toochor 1: Dhysical					
	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical
	and Inorganic	and Inorganic	and Inorganic	and Inorganic	and Inorganic	and Inorganic
	and Inorganic Chemistry	and Inorganic Chemistry	and Inorganic Chemistry Students	and Inorganic Chemistry	and Inorganic Chemistry	and Inorganic Chemistry
	and Inorganic Chemistry Students will build on	and Inorganic Chemistry Students will build on	and Inorganic Chemistry Students will extend their KS4	and Inorganic Chemistry Students will learn	and Inorganic Chemistry Students to start A2	and Inorganic Chemistry Students will then
	and Inorganic Chemistry Students will build on their KS4 knowledge	and Inorganic Chemistry Students will build on their KS4	and Inorganic Chemistry Students will extend their KS4 knowledge on	and Inorganic Chemistry Students will learn about periodicity and	and Inorganic Chemistry Students to start A2 learning by focusing	and Inorganic Chemistry Students will then learn about entropy
	and Inorganic Chemistry Students will build on their KS4 knowledge on atomic structure	and Inorganic Chemistry Students will build on their KS4 quantitative work on	and Inorganic Chemistry Students will extend their KS4 knowledge on chemical equilibria	and Inorganic Chemistry Students will learn about periodicity and the trends across	and Inorganic Chemistry Students to start A2 learning by focusing on thermodynamics.	and Inorganic Chemistry Students will then learn about entropy and how to calculate
	and Inorganic Chemistry Students will build on their KS4 knowledge on atomic structure to learn about orbital	and Inorganic Chemistry Students will build on their KS4 quantitative work on moles and	and Inorganic Chemistry Students will extend their KS4 knowledge on chemical equilibria and apply this to Kc	and Inorganic Chemistry Students will learn about periodicity and	and Inorganic Chemistry Students to start A2 learning by focusing on thermodynamics. Students will review	and Inorganic Chemistry Students will then learn about entropy and how to calculate entropy changes in
12	and Inorganic Chemistry Students will build on their KS4 knowledge on atomic structure to learn about orbital theory and electron	and Inorganic Chemistry Students will build on their KS4 quantitative work on moles and Avogadro's constant.	and Inorganic Chemistry Students will extend their KS4 knowledge on chemical equilibria	and Inorganic Chemistry Students will learn about periodicity and the trends across period 3.	and Inorganic Chemistry Students to start A2 learning by focusing on thermodynamics. Students will review and extend their	and Inorganic Chemistry Students will then learn about entropy and how to calculate entropy changes in reactions. This will
r 12	and Inorganic Chemistry Students will build on their KS4 knowledge on atomic structure to learn about orbital	and Inorganic Chemistry Students will build on their KS4 quantitative work on moles and Avogadro's constant. They will then learn	and Inorganic Chemistry Students will extend their KS4 knowledge on chemical equilibria and apply this to Kc calculations.	and Inorganic Chemistry Students will learn about periodicity and the trends across period 3. They will then learn	and Inorganic Chemistry Students to start A2 learning by focusing on thermodynamics. Students will review and extend their understanding on	and Inorganic Chemistry Students will then learn about entropy and how to calculate entropy changes in reactions. This will then be applied to
ear 12	and Inorganic Chemistry Students will build on their KS4 knowledge on atomic structure to learn about orbital theory and electron configuration.	and Inorganic Chemistry Students will build on their KS4 quantitative work on moles and Avogadro's constant. They will then learn how to calculate	and Inorganic Chemistry Students will extend their KS4 knowledge on chemical equilibria and apply this to Kc calculations. They will describe	and Inorganic Chemistry Students will learn about periodicity and the trends across period 3. They will then learn about the trends in	and Inorganic Chemistry Students to start A2 learning by focusing on thermodynamics. Students will review and extend their	and Inorganic Chemistry Students will then learn about entropy and how to calculate entropy changes in reactions. This will then be applied to Gibb's Free Energy
Year 12	and Inorganic Chemistry Students will build on their KS4 knowledge on atomic structure to learn about orbital theory and electron configuration. They will also learn	and Inorganic Chemistry Students will build on their KS4 quantitative work on moles and Avogadro's constant. They will then learn how to calculate different terms from	and Inorganic Chemistry Students will extend their KS4 knowledge on chemical equilibria and apply this to Kc calculations. They will describe and explain how	and Inorganic Chemistry Students will learn about periodicity and the trends across period 3. They will then learn about the trends in group 2, reactivity	and Inorganic Chemistry Students to start A2 learning by focusing on thermodynamics. Students will review and extend their understanding on enthalpy changes.	and Inorganic Chemistry Students will then learn about entropy and how to calculate entropy changes in reactions. This will then be applied to Gibb's Free Energy Equations and
Year 12	and Inorganic Chemistry Students will build on their KS4 knowledge on atomic structure to learn about orbital theory and electron configuration. They will also learn about ionisation	and Inorganic Chemistry Students will build on their KS4 quantitative work on moles and Avogadro's constant. They will then learn how to calculate different terms from the ideal gas	and Inorganic Chemistry Students will extend their KS4 knowledge on chemical equilibria and apply this to Kc calculations. They will describe and explain how different factors	and Inorganic Chemistry Students will learn about periodicity and the trends across period 3. They will then learn about the trends in group 2, reactivity and solubility of	and Inorganic Chemistry Students to start A2 learning by focusing on thermodynamics. Students will review and extend their understanding on enthalpy changes. Students will then	and Inorganic Chemistry Students will then learn about entropy and how to calculate entropy changes in reactions. This will then be applied to Gibb's Free Energy Equations and associated graph
Year 12	and Inorganic Chemistry Students will build on their KS4 knowledge on atomic structure to learn about orbital theory and electron configuration. They will also learn about ionisation energies and their	and Inorganic Chemistry Students will build on their KS4 quantitative work on moles and Avogadro's constant. They will then learn how to calculate different terms from	and Inorganic Chemistry Students will extend their KS4 knowledge on chemical equilibria and apply this to Kc calculations. They will describe and explain how different factors affect the position of	and Inorganic Chemistry Students will learn about periodicity and the trends across period 3. They will then learn about the trends in group 2, reactivity	and Inorganic Chemistry Students to start A2 learning by focusing on thermodynamics. Students will review and extend their understanding on enthalpy changes. Students will then apply their learning	and Inorganic Chemistry Students will then learn about entropy and how to calculate entropy changes in reactions. This will then be applied to Gibb's Free Energy Equations and associated graph work.
Year 12	and Inorganic Chemistry Students will build on their KS4 knowledge on atomic structure to learn about orbital theory and electron configuration. They will also learn about ionisation energies and their trends across a	and Inorganic Chemistry Students will build on their KS4 quantitative work on moles and Avogadro's constant. They will then learn how to calculate different terms from the ideal gas equation.	and Inorganic Chemistry Students will extend their KS4 knowledge on chemical equilibria and apply this to Kc calculations. They will describe and explain how different factors	and Inorganic Chemistry Students will learn about periodicity and the trends across period 3. They will then learn about the trends in group 2, reactivity and solubility of group 2 elements.	and Inorganic Chemistry Students to start A2 learning by focusing on thermodynamics. Students will review and extend their understanding on enthalpy changes. Students will then apply their learning to Born Haber Cycles	and Inorganic Chemistry Students will then learn about entropy and how to calculate entropy changes in reactions. This will then be applied to Gibb's Free Energy Equations and associated graph work. Students will build on
Year 12	and Inorganic Chemistry Students will build on their KS4 knowledge on atomic structure to learn about orbital theory and electron configuration. They will also learn about ionisation energies and their	and Inorganic Chemistry Students will build on their KS4 quantitative work on moles and Avogadro's constant. They will then learn how to calculate different terms from the ideal gas equation. They will then learn	and Inorganic Chemistry Students will extend their KS4 knowledge on chemical equilibria and apply this to Kc calculations. They will describe and explain how different factors affect the position of the equilibrium.	and Inorganic Chemistry Students will learn about periodicity and the trends across period 3. They will then learn about the trends in group 2, reactivity and solubility of group 2 elements. Finally, they will learn	and Inorganic Chemistry Students to start A2 learning by focusing on thermodynamics. Students will review and extend their understanding on enthalpy changes. Students will then apply their learning to Born Haber Cycles to calculate different	and Inorganic Chemistry Students will then learn about entropy and how to calculate entropy changes in reactions. This will then be applied to Gibb's Free Energy Equations and associated graph work. Students will build on their AS knowledge of
Year 12	and Inorganic Chemistry Students will build on their KS4 knowledge on atomic structure to learn about orbital theory and electron configuration. They will also learn about ionisation energies and their trends across a	and Inorganic Chemistry Students will build on their KS4 quantitative work on moles and Avogadro's constant. They will then learn how to calculate different terms from the ideal gas equation. They will then learn about empirical	and Inorganic Chemistry Students will extend their KS4 knowledge on chemical equilibria and apply this to Kc calculations. They will describe and explain how different factors affect the position of the equilibrium. Students will also	and Inorganic Chemistry Students will learn about periodicity and the trends across period 3. They will then learn about the trends in group 2, reactivity and solubility of group 2 elements. Finally, they will learn about group 7 trends	and Inorganic Chemistry Students to start A2 learning by focusing on thermodynamics. Students will review and extend their understanding on enthalpy changes. Students will then apply their learning to Born Haber Cycles to calculate different enthalpy changes.	and Inorganic Chemistry Students will then learn about entropy and how to calculate entropy changes in reactions. This will then be applied to Gibb's Free Energy Equations and associated graph work. Students will build on their AS knowledge of periodicity, and learn
Year 12	and Inorganic Chemistry Students will build on their KS4 knowledge on atomic structure to learn about orbital theory and electron configuration. They will also learn about ionisation energies and their trends across a	and Inorganic Chemistry Students will build on their KS4 quantitative work on moles and Avogadro's constant. They will then learn how to calculate different terms from the ideal gas equation. They will then learn	and Inorganic Chemistry Students will extend their KS4 knowledge on chemical equilibria and apply this to Kc calculations. They will describe and explain how different factors affect the position of the equilibrium.	and Inorganic Chemistry Students will learn about periodicity and the trends across period 3. They will then learn about the trends in group 2, reactivity and solubility of group 2 elements. Finally, they will learn	and Inorganic Chemistry Students to start A2 learning by focusing on thermodynamics. Students will review and extend their understanding on enthalpy changes. Students will then apply their learning to Born Haber Cycles to calculate different	and Inorganic Chemistry Students will then learn about entropy and how to calculate entropy changes in reactions. This will then be applied to Gibb's Free Energy Equations and associated graph work. Students will build on their AS knowledge of

				A	cauemic real 2022-2025
Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Flight Mass	both the molecular	reduction	Teacher 2: Physical	applied to enthalpy	
Spectrometry and	formula and mass	demonstrating	and Organic	changes of solution.	They will then learn
perform Time of	amounts before	these through half	Chemistry		about the trends in
Flight calculations.	building on balancing	equations. They will	Students will learn	Teacher 2: Physical	period 3 oxides and
	equations and	state oxidation	about alcohol	and Organic	their reactivity before
Teacher 2: Physical	titration calculations.	states of elements	production and the	Chemistry	studying the acidic /
and Organic		in different species	oxidation of alcohols	Students to start A2	basic nature of
Chemistry	Required Practical:	and apply their	before learning about	learning by focusing	period 3 oxides.
	Make up a volumetric	learning through	the elimination	on Optical	
Students will build on	solution and carry out	redox equations.	reactions of alcohols.	Isomerism. They will	Teacher 2: Physical
their KS4 knowledge	a simple acid-base	Required Practical:		learn about	and Organic
on bonding (ionic,	titration	Carry out simple	Required Practical:	enantiomers and	Chemistry
covalent: simple		test-tube reactions	Carry out test-tube	racemic mixtures.	Students will then
molecules, covalent:	They will also build	in aqueous solution	reactions to		learn about the
giant structures,	on atom economies	to identify cations	distinguish aldehydes	They will then learn	structure and acidity
metallic).	and percentage yield	(Group 2, NH_4^+) and	from ketones by	about the oxidation	of carboxylic acids.
	calculations from	anions (Group 7	reaction with Tollens'	and reactivity of	T I (11.0) (1
They will then learn	KS4.	(halide), OH^{-} , CO_{3}^{2} -,	reagent and Fehling's	aldehydes and	They will finally move
about		SO ₄ ²⁻).	solution	ketones, focusing on	onto the
electronegativity and	Students will then	564).		nucleophilic addition	nomenclature of
bond polarity. From	learn about the key		Students will then	reactions.	esters, esterification and uses of esters.
this, they will learn	concepts in	Teacher 2: Physical	learn about Organic		This module will then
about the three core	energetics building	and Organic	Analysis and use mass		
intermolecular forces	on exothermic and	Chemistry	spectrometry,		be finalised in A2.
and how this	endothermic reaction	Students will learn	infrared spectroscopy		Students will be
influences	principles.	about the structure,	to identify functional		
melting/boiling		nomenclature and	groups and assign		reviewing and consolidating what
points.	They will also learn	reactivity of	spectra to a variety of organic compounds.		they have learnt.
	about enthalpy	halogenoalkanes.	organic compounds.		they have learnt.
Finally, they will	changes in a reaction,	The latter be	Required Practical:		Students will sit their
apply their learning	calorimetry before	demonstrated	Identification of		AS chemistry exam.
on electron repulsion	applying this	through a variety of	functional groups by		AS chemistry exam.
theory to predicting	knowledge to Hess's	reaction mechanisms	test-tube reactions		
3D shapes of simple	Law (both enthalpy	including nucleophilic			
molecules.	of formation and	substitution,			
	combustion).	elimination and			
		ozone depletion.			

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Autumn 1	They will finally extend their learning on bond calculations from KS4. <i>Required Practical:</i> <i>Measurement of an</i> <i>enthalpy change.</i> Teacher 2: Physical and Organic Chemistry Students will build on their KS4 knowledge on rates and collision theory and apply this to Maxwell Boltzmann Distribution Curves . Students will learn the effect of catalysts on reaction kinetics and describe everyday examples of catalysts in industry . They will also evaluate the use of CFCs .	Spring 1 Students will then study alkenes, their structure, bonding and reactivity (electrophilic addition reactions). Finally, they will apply their learning to addition polymers.	Spring 2	Summer 1	Summer 2
	Required Practical: Investigation of how the rate of a reaction changes with temperature.				
	Students will then move their learning				

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
		onto Organic				
		Chemistry starting				
		with an introduction				
		to nomenclature,				
		formulae and				
		isomerism.				
		They will then extend				
		learning on alkanes				
		from KS4 looking at				
		fractional distillation				
		of crude oil and				
		cracking of				
		hydrocarbons.				
		Students will learn				
		about the				
		combustion of				
		hydrocarbons and the				
		chlorination of				
		alkanes in radical				
		chain reactions.				
	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical	Teacher 1: Physical	Students will be
	and Inorganic	and Inorganic	and Inorganic	and Inorganic	and Inorganic	reviewing and
	Chemistry	Chemistry	Chemistry	They will then learn	Chemistry	consolidating what
	Students to start A2	Students will learn	Reaction kinetics will	how to perform	Students will build on	they have learnt.
	learning by focusing	about Acids and	then be applied to the	redox and titration calculations.	their AS knowledge of	
m	on thermodynamics. Students will review	Bases extending knowledge of the pH	Arrhenius equation and its associated	calculations.	periodicity and learn about the reactions	Students will sit their
H	and extend their	scale, defining and	graph work.	Finally, they will learn	of period 3 elements.	final chemistry exam.
ar	understanding on	Kw and calculating	Sight work.	about the use of	or period o cicilients.	
, e	enthalpy changes.	Ka. They will perform	Students will then	transition metals as	They will then learn	
>		acid / base titration	finalise their learning	catalysts with	about the trends in	
	Students will then	calculations and	in this module by	particular reference	period 3 oxides and	
	apply their learning	analyse pH curves	studying the Rate	to the Contact	their reactivity before	
	to Born Haber Cycles	derived from these to	Determining Step.	Process.	studying the acidic /	
	to calculate different	identify appropriate			basic nature of	
	enthalpy changes.	indicators to use.			period 3 oxides.	

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
This will also be		Required Practical:	Students will then		
applied to enthalpy	Students will continue	Measure the rate of a	move onto learning	Students will then be	
changes of solution.	their acids/base work	reaction by an initial	the reaction of ions	reviewing and	
Students will then	by evaluating how	rate method, <u>and</u> a	in aqueous solutions.	consolidating what	
learn about entropy	buffer solutions work	continuous		they have learnt.	
and how to calculate	and performing	monitoring method.	Required Practical:	Teacher 2: Physical	
entropy changes in	buffer calculations.	Students will then	Carry out simple test-	and Organic	
reactions. This will		learn about the	tube reactions to	Students will be	
then be applied to	Required Practical:	chemical properties	identify transition	reviewing and	
Gibb's Free Energy	Investigate how pH	of transition metals	metal ions in aqueous	consolidating what	
Equations and	changes when a weak	including ligand	solution.	they have learnt.	
associated graph	acid reacts with a	substitution			
work.	strong base and when	reactions and the	Teacher 2: Physical		
	a strong acid reacts	chelating effect.	and Organic		
Students will then	with a weak base.	From their prior	Chemistry		
extend their KS4		learning in GCE			
learning on chemical	Students will build on	chemistry, they will	Students will then		
cells and use this to	their kinetics learning	apply this to the	learn their final		
predict the direction	from AS by describing	shape of transition	module from this half		
of simple redox	and analysing rate of	metal complexes and	of the course where		
reactions. They will	reaction using	their variable	they will study the		
then learn about the	graphs. They will then	oxidation states,	equilibrium constant,		
commercial uses of	learn about the rate	giving rise to their	Kp . Here they will		
electrochemical cells.	expression and how	reactivity and	calculate partial		
	this links to the order	coloured complexes.	pressures, mole		
Required Practical:	of the reaction.		fractions and Kp		
Measuring the EMF of	Following this, they	Teacher 2: Physical	calculations. They will		
an electrochemical	will then learn about	and Organic	also evaluate how		
cell.	the Rate Equation.	Chemistry	factors such as		
		, Students will start	temperature and		
	Teacher 2: Physical	their learning in	catalysts affect the		
	and Organic	biological chemistry	position of the		
Teacher 2: Physical	Chemistry	by studying the	equilibrium.		
and Organic	Students continue to	chemistry in enzyme			
Chemistry	learn about	action, DNA and			
	electrophilic	action of anti-cancer			
Students will start by	substation applying	drugs.			
reviewing their		5			

		c · · ·	c ·		ademic Year 2022-2023
Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
learning on carboxylic	this to Friedal-Crafts	Students will then			
acids from AS.	Acylation.	learn about ¹ H and			
		¹³ C NMR and analyse			
They will then move	They will then learn	spectra to identify			
onto the	about amines –	their corresponding			
nomenclature of	nomenclature,	organic compounds.			
esters, their	physical properties	Students will then			
formation / reactions	and reactivity	learn their final			
and finally their uses.	(nucleophilic	module from this half			
	reactions).	of the course where			
Students will also		they will extend their			
perform	They will learn about	learning on			
esterification	condensation	chromatography			
practicals in the lab.	polymers and the	from KS4 by applying			
They will then learn	biodegradability and	this to thin layer, gas			
about the	disposal of polymers.	and column			
nomenclature and		chromatography.			
reactivity					
(nucleophilic addition		Required Practical:			
elimination) of acyl		Separation of species			
chlorides, amides and		by thin-layer			
acid anhydrides.		chromatography.			
Required Practicals:					
Preparation of - a					
pure organic solid test					
of its purity; - a pure					
organic liquid.					
Students will also					
start their learning on					
arenes –					
nomenclature,					
physical properties					
and reactivity:					
electrophilic					
substation, nitration.					