## Maths Department Curriculum Overview

Honscholofer cirs

Maths students at Bentley Wood will become fluent in the fundamentals of mathematics, through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.

This can be seen through:

- An ambitious and accessible scheme of learning (SoL) that enables progress for all students.
- A SoL that develops fluency, reasoning and problem solving through deliberate practice, interleaving and regular low-stakes testing.
- A sequenced curriculum with interleaved topics to allow continuous recall.
- Each stage of the curriculum builds on prior skills and knowledge allowing a smooth transition to the next stage

Maths students at Bentley Wood will be able to reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language. The ideal aim is for pupils to attain proficiency, not just collective moments of understanding, familiarity or experience. This will help pupils to develop motivation in the subject.

This can be seen though:

- Well-chosen examples, questions that link across strands of topics that involve several steps of problem solving
- Use of correct and accurate language is promoted throughout the SoL and resources used.
- Useful facts and efficient and accurate methods are paired within a topic sequence.
- Strategies for solving problem types are taught and learned once pupils can recall and deploy facts and methods with speed and accuracy.
- Teachers balance introducing new content with pupils' need to spend time revisiting content.

Maths students at Bentley Wood will be able to solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

This can be seen though:

- Regular assessment of the strands of fluency, reasoning and problem solving which are clearly seen in the assessments.
- Students receiving regular and individualised feedback which enables them to understand how to move forward.
- Built in time in our SoL for students to reflect and work on misconceptions and errors identified through their assessments.

Maths students at Bentley Wood are offered a variety of opportunities and experiences that widen their appreciation of mathematics and the world around them.


|  | Autumn 1 | Autumn 2 | Spring 1 | Spring 2 | Summer 1 | Summer 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Measure and draw angles |  |  |  |  |
| $\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathbf{c}} \\ & \mathbf{c} \\ & \hline \end{aligned}$ | Deal with factors and multiples, including HCF, LCM and prime factorisation. <br> Use mental and written methods in order to perform calculations. <br> Perform calculations involving negative numbers. <br> Perform calculations involving positive integer powers and roots. <br> Round to a required degree of accuracy and estimate calculations. <br> Simplify algebraic expressions. <br> Expand single brackets and factorise into single brackets. <br> Solve equations. <br> Form equations to solve problems in context. | Draw, read and interpret graphs involving rates of change including distance-time graphs. <br> Calculate averages and range and use them to compare data sets. <br> Calculate averages from frequency tables. <br> Draw and interpret scatter graphs. <br> Interpret graphs in context. <br> Add, subtract, multiply and divide with fractions and simple algebraic fractions. <br> Convert between fractions, decimals and percentages . | Simplify algebraic expressions. <br> Expand single brackets and factorise into single brackets. <br> Solve equations. <br> Form equations to solve problems in context. <br> Calculate the area/perimeter of 2D Shapes. <br> Represent 3D shapes. <br> Solve problems involving volume. <br> Find the theoretical probability of a single event. | Complete Venn Diagrams and find probabilities. <br> Work with experimental probability. <br> Compare probabilities. <br> Perform and describe each of the four transformations. <br> Use Pythagoras' Theorem. <br> Work with proportion and pie charts. <br> Share into a ratio and compare ratios. <br> Work with rates of change. | Work with the basic angle facts. <br> Understand and use loci. | Consolidation of topics learnt throughout the previous terms and revision. This term there will be tests assessing their progress in year 8 in relation to the curriculum. |



|  | Autumn 1 | Autumn 2 | Spring 1 | Spring 2 | Summer 1 | Summer 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Higher (sets 1 to 4): Rounding Indices \& standard form <br> Inequalities and linear programming | Higher (sets 1 to 4): Compound Measures <br> Quadratics <br> Probability | Higher (sets 1 to 4): <br> Transformation and vectors <br> Trig Graphs and Transforming Graphs | Higher (sets 1 to 4): <br> Trigonometry in nonRA triangles <br> Ratio, Proportion, Percentage and growth | Higher (sets 1 to 4): Ratio, Proportion, Percentage and growth <br> Function notation <br> Sequences and Iteration | Higher (sets 1 to 4): <br> Histograms and Sampling |
|  | Foundation (set 5): <br> Rounding, estimating \& Bounds <br> Compound Measures <br> Equations, lines and inequalities | Foundation (set 5): Probability <br> Quadratics | Foundation (set 5): <br> Congruence, <br>  <br> Transformations <br> Ratio and percentages | Foundation (set 5): Indices and standard form <br> Pie charts and averages from a frequency table | Foundation (set 5): Proportion and rates <br> Angles and trigonometry | Foundation (set 5): Distance \& equation between two points \& non linear graphs <br> Revision \& EOY Exams for both tiers |
|  | Higher: | Higher: | Higher: | Higher: | Higher: |  |
|  | Compound measures (focus more on speed problem solving) <br> Rates of Change <br> Proof, Congruence, Similarity | Circle theorems <br> Revision topics Rounding, Bounds \& Standard form FDP \& Comparing decimals <br> Consolidation \& Exam practice <br> Mock 1 | Revision topics <br> Ratio <br> Angles in parallel lines \& angles in triangles and regular polygons Mean from grouped frequency tables \& choosing an appropriate average | Revision topics Setting up \& solving linear equations <br> Quadratics <br> Consolidation \& Exam practice <br> Mock 2 | Revision topics Solving simultaneous equations (include non linear sim. equations) <br> Area \& volume (focus on circles \& parts of cirlces, cylinders \& cones, incl. algebraic manipulation) | External GCSE |


|  | Autumn 1 | Autumn 2 | Spring 1 | Spring 2 | Summer 1 | Summer 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Foundation: <br> Distance and equation between two points <br> Substitution and sequences <br> Vectors | Foundation: <br> Vectors (continued) <br> Arcs and Sectors, Cones and Pyramids <br> Consolidation \& Exam practice <br> Mock 1 | Foundation: <br> Revision topics FDP <br> Ratio \& Proportion Best buys \& Money problems | Foundation: <br> Revision topics <br> Properties of shapes <br> \& transformations <br> Consolidation \& Exam practice <br> Mock 2 | Consolidation \& Exam practice <br> GCSE External Exams <br> Foundation: <br> Perimeter, Area \& Volume <br> Consolidation \& Exam practice <br> GCSE External Exams |  <br> Foundation tiers |
| $\begin{aligned} & \mathbf{N} \\ & \underset{\sim}{4} \\ & \stackrel{1}{0} \\ & > \end{aligned}$ | Pure 1 <br> Unit 1 - Algebra and Functions <br> Unit 2 - Coordinate Geometry Unit 3 - Further Algebra | Pure 1 <br> Unit 4 - <br> Trigonometry <br> Unit 5 - Vectors <br> Unit 6 - <br> Differentiation <br> Unit 7 Integration | Pure 1 <br> Unit 8 - Exponentials and Logarithms <br> Applied 1 <br> Unit 1 - Statistical <br> Sampling <br> Unit 2 - Data presentation and interpretation Unit 3 Probability Unit 6 Quantities and units in mechanics | Applied 1 <br> Unit 7 Kinematics 1 <br> Applied Unit 4 - <br> Statistical <br> distributions <br> Applied Unit 5 <br> Statistical Hypothesis testing <br> Applied unit 8 Forces and Newtons Law Applied Unit 9 <br> Kinematics 2 | Exam Revision and Practice <br> External AS Exam | Pure 2 <br> Unit 1 - Proof Unit 2 - Algebraic and partial fractions Unit 3 - Functions and modelling Unit 4 - Series and Sequences Unit 5 - The Binomial Expansion |



## Recap of Core Pure 1

Core pure 2:

Complex numbers
Series
Methods in calculus

## Further Mechanics 1

 Momentum \& Impulse Work, Energy, Power
## Core pure 2

Further Volumes of revolution Polar coordinates Hyperbolic functions
Differential
equations \& modelling

Further Mechanics 1
Elastic strings \& springs, Hooke's Law Elastic collisions in one dimension

Further Mechanics 1 Further Statistics 1 Elastic collisions in two dimensions.

## Further Statistics 1

Discrete random variables,
Poisson
Distributions,
Geometric \&
negative binomial distributions, Hypothesis testing

Central limit
theorem,
Chi-squared tests,
Probability
generating functions, Quality of tests.

Revision \& exam Practice

Exam Revision and Practice

External A Level
Exam

